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This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of
-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be

characterized as an architecture with constant link lengths that are attached to moving sliders

on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link

motion (position, velocity, and acceleration) is computed given the desired mobile platform

motion. Based on the inverse kinematic analysis, in order to compute the required actuator

forces given the desired platform motion, inverse dynamic equations of motion of a parallel

manipulator is derived by the Newton- Euler approach. In this derivation, the joint friction as
well as all link inertia are included. Relative importance of the link inertia and joint frictions

on the computed torque is investigated by computer simulations. It is expected that the inverse

kinematic and dynamic equations can be used in the computed torque control and model-based

adaptive control strategies.
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Nomenclature ----------­
Ai : Position vector of i- th universal joint
B; : Position vector of i- th spherical joint

I : Moment of inertia of mobile platform

Iu : Moment of inertia of i-th link

R : Orientation matrix of mobile platform

R u : Orientation matrix of i- th link
a, : Unit vector along the i- th linear guide

lSi : Frictional force at i- th prismatic joint
f Ui : Frictional moment at i- th universal joint

fPi : Frictional moment at i- th spherical joint

I : Link length

m« : Equivalent mass of i-th slider part
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mu : Mass of i- th link

m : Mass of mobile platform
n, : Unit vector along i-tb link length direc-

tion

(U : Angular velocity of mobile platform

(Uu : Angular velocity of i- th link

t, : Articular force of i- th actuator
a x : Skew-symmetric matrix

1. Introduction

In recent years, parallel manipulators have

drawn much attention due to their desirable

characteristics such as high rigidity and low error

accumulation. Parallel manipulators are compos­

ed of closed chains, which enhance the stiffness

and positioning accuracy but can complicate the

kinematic and dynamic characteristics. Neverthe­

less, the kinematic and dynamic analyses are very
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important for their design and control since the

accurate dynamic model, and the consequent

knowledge of the dynamic characteristics of

parallel manipulators enable designers to devise

an efficient controller design for high-speed

operations.
The traditional Newton-Euler approach for

serial manipulators are composed of forward and

backward recursions. The motion of each link is

derived through forward recursion, and Newton­

Euler equations are derived through backward

recursion. However, in the case of parallel

manipulators, because of closed chain kinematic

architectures, the independent forward and back­

ward computations are impossible. Therefore, a

computation technique that is unique to each

closed chain architecture needs to be developed.

Lebret et al. derived dynamic equations of a

simple Stewart platform (Ur.S type: In this paper,

the bar underneath the capital letter (e. g. .P)
signifies the actuated joint.) by the Lagrangian

approach. Revoulet and Berthomieu derived the

inverse dynamic equations of a Stewart platform

by the Newton-Euler approach neglecting the

Coriolis, centrifugal terms. Dasgupta and

Mruthyunjaya derived inverse dynamic equations

of a Stewart platform by the same approach while

considering joint frictions as well as link inertia

effects. Miller used the Hamilton's principle,

Codourey used the virtual work theory, and Kim

et al. used Kane's methods in their derivation of

equations of motion of DELTA robots. Ji studied

leg inertia effect through the decoupled leg

dynamic equations of a Stewart platform.

Gosselin derived inverse dynamics of a Stewart

platform by the Newton-Euler approach and

discussed parallel computational algorithm.

Dasgupta and Choudhury presented a general

strategy based on the Newton-Euler approach to

the dynamic formulation of parallel

manipulators. They derived the dynamic

equations for six planar and spatial (PRPS,

RRRS, RPS type) types of parallel manipulators.

In the Newton-Euler approach, however, the

way of deriving equations of motion as well as the

derived equations depend on the specific
kinematic architecture of the mechanism. This

paper presents inverse kinematic and dynamic

equations of 6-DOF fUS HexaSlide type parallel

manipulators through the Newton-Euler ap­

proach. The equations include the link inertia

and joint frictions in all joints, the relative im­

portance of which are investigated by computer

simulation.

The 6-DOF fUS HexaSlide type parallel

manipulator (HSM) is composed of 6 sliding

actuators, 6 fixed length links, and a mobile

platform. The sliders move along linear motion

guides that are fixed on the ground. The links are

of constant length and are connected to the sliders
through universal joints (U). The axes of the

prismatic joints along which the centers of the

universal joints are being translated will be

referred to as the rail axes. Finally, the links are

connected to the mobile platform through sphe­

rical joints (S). The several known examples of 6­

DOF robots that fall into this group are the

"Hexaglide" robot at ETH Zurich [Fig. 1.3(a) J,
the "HexaM" milling machine by Toyoda [Fig. 1.

3 (b) J, the "active wrist" proposed by Merlet and

Gosselin [Fig. 1.3(c) ]. The HSMs have many

attractive characteristics such as fixed actuators

and lighter moving parts compared to the parallel

manipulators with moving actuators, among

others. To the best of our knowledge, however,

there has not been any research on the dynamics

of HSM. It is probably due to the fact that their

analysis is generally more complicated than the

analysis of the other simpler types of parallel

manipulators such as Stewart platforms.
The paper is organized as follows: In the next

section, inverse kinematic analyses are presented.

In the kinematic analyses, the kinematic motion

(posture, velocity, acceleration) of each slider,

link, and platform as well as articular variable are

derived for a given desired trajectory of a plat­

form. In Sec. 3, Newton and Euler equations are

constructed for each body using the kinematic

motion information. From these equations,

inverse dynamic equations of HSM are derived.

In Sec. 4, the accuracy of the derived dynamic

model is compared against that of another model

that is gerierated by a fully nonlinear dynamic

analysis software. In addition, relative importance
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Fig. 1 Three examples of HSMs: (a) the
"Hexaglide" robot, (b) the "HexaM" ma­
chine, and (c) a similar model of the "active
wrist"

of the link inertia and joint frictions on the

computed torque is investigated. Finally, in the

last section, conclusions of the present work are

summarized.

2. Inverse Kinematic Analysis of the
Model

In order to derive the Newton-Euler equations

of sliders, links, and platform, the motion of each

body is needed. Through the inverse kinematics,

the motion of each body can be determined given

the desired trajectory of the mobile platform. In
the general HSM (Fig. 2), the start and end

points of rail axis i (i= 1,2, ..., 6) will be denoted

respectively by Ai,o and Ai,l. The center of uni­

versal joint i, which lies on the line segment Ai,o
Ai,l (rail axis i), will be denoted by a base joint

Ai. A right-handed base reference frame with

A..o

base

A.,o __~

mobile
platform

Fig. 2 Schematic diagram of hexaSlide mani­
pulator

center 0 is attached to the base, The center of

spherical joint i will be denoted by a platform

joint B i . The mobile reference frame is attached to

the mobile platform at the tool tip point C. The

distance between points Ai,o and Ai will be

denoted by articular coordinate Ai. Changing the
values of the articular coordinates will control' the

posture of the mobile platform.

2.1 Platform
The position of the platform is denoted by

point C measured from the origin 0, and the

orientation is expressed by three Euler angles [IJI"
e~J. The position and orientation are prescribed
through desired path planning. For convenience,

three successive Euler angles are defined as

follows: First rotate about the base X axis by the

angle IJI". Next rotate about the base Y axis by the

angle e. Finally rotate about the mobile z axis by

the angle ¢;. In this case, the orientation matrix
(R) of the platform is given by

R=Ry,8Rx,'l'Rz.~

[

C8 0S8 ~[l 0 0][ C¢ -S¢ 0-1
= 0 1 0 J 0 CW -SIfJ S¢ C¢ 0 !(I)

-58 0 C8 0 SIfJ CIfJ 0 0 1-1

[

cec¢+S1JfSes</J -C8S<f;+S1JfSeC</J csee
= C1JfS</J CIfJC¢ -SIfJ

-seC¢+SIfJC8S</J seS<f;+SIfJC8C¢ ClfJC8
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(4)

(5)

(2)

Therefore Ai is obtained by knowing d, vector

(i.e, R from Eq. (4)). The velocity and accelera­

tion of Aican be obtained by direct differentiation

of Eq. (8) as

~i=al(L k(t) (9)
2/liTff

X=ald (2k'(t)k(t)-k(t)2) (10)
4k (t) [liIT)

where k (t) = (aldY-dldi+ 12
,

k(t) =2 (ald;) (altU -2dliL
k'(t) =2 (aleL) 2+2 (aldi) (alit)

-2dl(L-2dldi

Note that these expressions are quite complex

due to the square root term, However, in the case

of the Stewart platform, inverse kinematic solu­

tion is simply Ai=IIAiRII, where point A, is fixed

to the base, which simplifies kinematic and

dynamic analyses. The more complicated inverse

kinematic solution of the HSM will render all

other analyses much more complicated,

For the link kinematic analysis and inverse

dynamic analysis in the next section, the motion

of point A, should be given as follows:

Ai=Ai,o+Aiai, Ai=~iai, Ai=Xai (II)

and taking only the physically meaningful value

from the two solutions, we obtain:

B,

Fig. 3 Kinematic model of slider and link

2.3 Link
Let n, be the unit vector along the i-th link

length direction (i,e. ni= (Bi--: Ai) / l) and point

Pi be the gravity center position of the link, The

translational motion of a link can easily be

r vce-:ssocv l
w=! e-¢S1Jf

I .
~ -1JfSe+¢ceC1Jf-

I 7jjce-8if!S8+.~·S~CIJ!-~~eSIJ!+¢8CeCIJ! l
(/)=1 e-r/JslJ!-r/JIJ!CIJ! J

L-ljise- iJr8Ce+¢'CeCIJ! -¢8SeCIJ!-¢iJrceslJ!
(3)

In order to derive the motion of the sliders and

links and dynamic equations of the platform in

the later sections, motion of B, and G (center of

gravity of the platform) are derived as follows:

Bi=C+RCBi
Bi=C+wxRCBi
it=c'+ (O>x+wxWX) RCBi
G=C+RCG'
G=C+&RCG'
G=C+ (O>x+wxWX) RCG'

2.2 Slider
Kinematic analysis of the slider involves

computing the articular variable (Ai) when the

slider is moving on a linear guide from point A~o,

Figure 3 shows a detailed kinematic model of the

slider part. Let a, be the unit vector along the rail

axis A~oA~l. Based on the HSM geometry, the
following equations are derived:

AiR=A~oBi-A~oAi=di-Aiai (6)

Since the vector AiB i has the constant magni­

tude I, the following equations are derived:

(di-Aiai)T(di-Aiai) =/2 (7)

Solving Eq. (7) for the articular variable (Ai)

where ce and se represent cos e and sin e,
respectively.

The translational velocity and acceleration of

the platform are derived directly by taking time

differentiation of the position vector. For deriving

the angular velocity, the relations R=wxR be­

tween the orientation matrix (R) and the angular

velocity tr») are used. Here, to" denotes a skew­

symmetric matrix generated by to. Then, the

angular velocity and angular acceleration of the

platform are derived as

where the constant CBi and CG' vectors ar

e expressed in the platform reference frame.
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Using the mathematical relation I 3x3+ ni'ni'=
n.n", the angular velocity of a link can be

expressed as

In the slowly rotating slender link case, the

angular velocity about the link length direction
may be negligible, i.e. n; alli:::::O. Thus, Eq. (17)

can be rewritten as

Multiplying ni' to both sides of Eq. (16) gives

ni'n/ alii = -ni'ni ( = - alii from Eq. (18)) .

Therefore, the following simplified equations for
the angular velocities and accelerations are

derived as

( 19)

( 18)

( 17)

alli=ni'ni
wli=ni'ni+ni'ii;=ni'ii;

since ni'ni=O.

I .. I .
Pi=Ai,o+Aiai+ 2 n., Pi=Aiai+2ni,

~ .. I
Pi=Aiai+2Ii; (12)

Next, consider the rotational motion of a link.

Since each link of the HSM is composed of a

universal-spherical joint pair, it has 2 DOF

rotational motion. The universal joint has two

rotational axes. One is attached to the link and

the other is attached to the slider. Let the axis

attached to the slider be a, and the axis attached
to the link be /:1;. In the case of a general universal

joint, Pi is perpendicular to a, as well as to n.. A

reference frame of the link is attached to the

center of the link, with axis defined along the n,

vector, and y axis is along the Pi vector, and x
axis defined by the right hand rule. Hence the
rotation matrix of a link is derived as

derived as

Rearranging Eq. (15 leads to

Note that the axis a, is a fixed axis. Thus, the

configuration-dependent moment of inertia of the

link is derived as

where Iii is the constant moment of inertia about

the link local coordinate frame.

The angular velocity of the link (CVIi) can be
computed exactly from Eq. by using the relation­

ship CVI/ =RliRT.. However, this direct com­
putation may lead to very complicated

expressions for CVIi and (vii. If the parallel
manipulator has slender links and is not moving

fast, the kinetic energy of the link associated with

the rotation about the link direction (n.) may be
negligible. In this case, the angular velocity of the

link can be derived with great simplification as

follows:
The angular velocity of the link is related to ni.

This fact can be shown in the following

equations:

Bi=Ai+lni=Ai+cvi'i(lnJ (15)

3.1 Slider
In the slider body, there are the gravity force,

actuator force, reaction force at point Ai, and

reaction/friction forces from the linear guide.
Thus, the Newton equations of motion of the

slider body is constructed as (see Fig. 4)

riai+msig+N i+ ISiai-FAi=mSiXai (20)

where t; is the actuator force to be computed, m«

is the i-th slider mass, N i is the normal reaction

force between the slider and the linear guide, lSi
is the friction force by the linear guide, and F Ai is

the reaction force at point Ai. The friction force

model is considered in Sec. 3.4. The actuating

force (rJ can be obtained by taking the dot

products involving the at vector, and the normal

3. Inverse Dynamic Analysis of the
Model

The motion of the sliders, links, and platform

are derived through inverse kinematic analyses of

each body in the previous chapter. Then, Newton

- Euler equations of each body can be constructed
to derive the inverse dynamic equations which

determine the required actuator force when the

desired platform motion is prescribed.

( 16)

( 14)

( 13)n.x e. ]' 'nIlniXail1 i

Rc=[ (niXaJ Xni
, IlniXail1
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z
Fig. 6 The detailed dynamic model of platform part

(26)

y

Let ri be a I X6 row vector composed of o's

except for the i-rh element with the value of l.
Then, from Eq. (25) the FSiz component can be

derived when the T 1 matrix is invertible as

3.3 Platform
In the platform part, there are the gravity force,

reaction force from the link (FBi), spherical joint

friction (fpi ) , and the externally applied force (f
(t)) and moment (M (t)). Thus, the Newton­

Euler equations of motion of the platform part

are constructed as (See Fig. 6)

mg+f(t)-.EFBi=mC+mwxRCG'+~wxwxRCG' (25)
M(t) +GTxf(t) -Sfp;-SGB:FBi=Iw+wxlw

Then, through the mathematical relation I3x 3n:
n7=ninf, FBi can be expressed as

FBi=-n7n7FBi+FSizni (24)

where FSiz=nfFBiz is the component of FBi on

the slider axis. The term n7n7FBi can be
calculated by Eq. (23). Note in this computation

process that MAi is eliminated through the cross­

product with the unit vector n, because M Ai has

only the n, direction component. This is because

the universal joint has only rotational constraint

about n, direction. However, the term Fs« n.

cannot be evaluated in the link part only. There­

fore the computation of FSizn, requires the

dynamic analysis of the platform part, which is

explained in the next section.

Fig. 4 The detailed dynamic model of slider part

Fig. 5 The detailed dynamic model of link part

- i­FAi+FBi+mug=muAiai+ml'Tni
I . (22)
2n: (FBi-FAi) +fui+fpi+MAi=Iliwli+w~ (IliWli)

From Eqs. (19) and (22), the following equation

is derived:

force (N i) has the u, and Vi components Thus,
_ - ( T Tri-mSiAi-!Si-mSi a: g) +ai F Ai ( )

Ni= (ufFAi-msiufg)Ui+ (vfFAi-msivfg)Vi 21

In order to compute the actuator and normal

forces, the reaction force F Ai at point A, should be

obtained by the dynamic analyses of the link and

platform bodies described in the following

sections.

3.2 Link
In the link part, there are the gravity force,

reaction force from the slider (FAi) , reaction force

from the platform (FBil, transmitted frictional
moment through the universal joint (MAi), uni­

versal joint friction moment (fUi) , and spherical

joint friction moment (fpi ) . Thus, the Newton­

Euler equations of motion of the link part is
constructed as (see Fig. 5)
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(28)

FAi. The reaction moment at the universal joint

can also be computed from Eq. (23).

4. Effects of Link Inertia and Joint
Friction

(32)

(31)

[ -l:Tn 1fpi ]

-l:-JGB:n1fPi-l:fpi

f Ui= - CUiW/i- Tui
fpi=-CPi(W/i-W) -TPi

where Cui, CPi, rui, and 'Pi are viscous friction
coefficients and static frictional moments in the
universal and spherical joints, respectively. Note

that the static frictional moments have the same
direction as the viscous frictional moments since

the frictional moments act opposite to the

rotational direction.
The actuation forces needed to overcome those

frictional moments in Eq. (31) are written as

where Csi, !J.Si, n" and pitch denote the viscous
friction coefficient, coulomb friction coefficient,

frictional moment by the internal pressure in the

ball screw, and pitch of the screw respectively.

Second, frictional moments in the universal and

spherical joints can be modeled by:

In order to improve control performance, it is

necessary to fully understand dynamic

characteristics. The inverse dynamic equation of

3.4 Friction modeling
For more accurate position control and

dynamic simulation, appropriate friction models

in the linear slide guide, ball screws, and in the

universal and spherical joints should be

incorporated in the dynamic equations of motion.

First, friction force (fsi) in the slider part can be

modeled as follows:

fSi= -csi'i.;- f./si(U; -vi) NisignOi) - rb/ pitch (30)

F I xI . + I X x(I ) 1 xfAi=lni iiW/i lni Wli /iW/i -lni ut

-Tn1fpi+; m/i(I3X3+ninl)iii

I ~ T)+ 2 mlilHI3x3+nini a,

- ~ m/i(I3x3+ninf) g-niyiTi lT

Finally, the inverse dynamic equation for

computing required actuator force t, is derived by

Eq. (21) as

FBi=-+nnIu+mu(; rI3x3) wu

-in: (ilt; (Li(ilU) ++naUi++naPi (27)

I i x x + I x x + T-1T- 2 mUllini n:a, ?Uni n: g niti 1

_ ~ T 1 Tx •
ri-mSi(Ai-ai g) - !Si+zaini I/iw/i

+ 1 T x x(I ) 1 T xf I T xfzaini Wli /iW/i -zaini Ui-zaini Pi

+ ~ m/ia; (I3x3+ninf) iii++m/iXiaHI3x3

-l-n.nf) ai-+m/ia; (I3X3+ninf)g

-a;niyiTi1T (29)

The right side of Eq. (29) is calculated through

the inverse kinematic analysis presented in Sec­

tion 2. Note that a;niyiTi l is related to the

kinematic Jacobian matrix and the T matrix

shows coupled dynamic effects between the plat­

form part and link parts in the parallel

manipulators because of the closed chain

architectures.
In the mechanical design, we need the joint

reaction forces and moments that are easily com­

puted by Eq. (21) for N i, by Eq. (27) for sphe­

rical joint FBi, and by Eq. (28) for universal joint

where

Then, by Eq. (22), F Ai is derived as

T=[. mg-mG+f(t)+l'n:n:FBi ]
-ICIl-CIlXICIltM(t) +GTxf(t) +l:GB:n:n:FBi-l'fpi

T - [n1 n2 n3 n, n, n, ]
1- GB2nl GB2n2 GB~n3 GB:n4 GB5'ns GB5'n6

Thus, FBi is derived from Eqs. (23), (24), and

(26) as
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4.2 Link inertia effect
The required actuator force due to link inertia

(b)

Fig. 8 (a) Actuator forces from DADS and
MATLAB for a sample desired trajectory of
the platform that is moving with a constant
acceleration, (b) Descrepancy between the
actuator forces from DADS and MATLA

the correctness of the derived equations for the

most cases.

(b)

Fig. 7 (a) Actuator forces from DADS and
MATLAB for a circle trajectory with 40 rpm
speed, (b) Descrepancy between the actuator
forces from DADS and MATLAB

4.1 Accuracy of dynamic model
In order to verify the correctness of the derived

inverse dynamic equations of a HSM, computer

simulation has been performed. In this

simulation, a commercial dynamic analysis

software, DADS (Dynamic Analysis and Design

System), is used in order to get the reference

results. First, an inverse dynamic analysis of a 3D

model of the HSM in DADS computes the

actuator forces given desired trajectory of a plat­

form. Then, the derived inverse dynamic

equations coded in MATLAB generate actuator
forces. In the following simulation cases, the

frictional effects are not considered because it is

difficult to measure true friction parameters and

because it is difficult to implement friction models

in DADS.

Figure 7 shows the actuator forces when the

desired trajectory of the platform is given as a

constant radius circular motion (r= lOOmm) with

a speed of 40 rpm. Figure 8 shows the actuator

forces for another desired trajectory of the plat­

form that is moving with a constant acceleration

(Eq. (33): translational accelerations are in [rn/

sec"], angular accelerations are in [rad/sec'']) .

X= { [0.1 0.1 0.1 0.050.05 oW, for O~ t« 1;5S } (33)
[-0.1 -0.1 -0.1 -0.05 -0.05 -O.IJ , for 1.5~t~3s

As shown in Figs. 7 and 8, the MA TLAB

simulation results are almost the same as DADS

results. A minor discrepancy between the

MATLAB and DADS results may be due to the

simplified slender link model. We simulated other

desired trajectories with higher speeds, which also

showed good agreement with two simulation

results. The simulation results, therefore, validate

HSM (Eq. (29)) is very complex and requires

much calculation time. Therefore, we may ignore

less important dynamic terms for rapid real-time

calculation in situations involving slow motion or

small applied end-effector forces. In this section,

therefore, relative importance of the joint friction

and link inertia effects are analyzed by computer

simulation for typical operations. The geometric­

al and dynamic parameters of the HSM for com­
puter simulation are summarized in Appendix 1.
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Fig. 9 Total actuator (a) and link inertia actuator
force (b) (speed =20 rpm)

Fig. 10 Total actuator (a) and link inertia actuator
force (b) (speed =60 rpm)

effect is derived from Eq. (29) as

_ I T xI . + I T x x ( IrUi--rai n; /i(J)/i -rai n; (J)/i I/i(J)/i) +'4mlia;

(I3x3+ninf) ft i + ~ mlill.a; (I3x3+ninf) a,

Note that a portion of the link inertia effect

influences the actuator force directly, while the

remaining portion influences the actuator force in

a coupled way through the transpose of the

Jacobian matrix. Since the actuators of HSM are

fixed at the base, the link weight is smaller than

that of Stewart platform in which the actuators

are attached at the moving links. The link inertia

effect in the HSM, therefore, may be insignificant

given the the slow operation of the manipulator.

Figure 9 shows the total actuator forces and

actuator force generated only by the link inertia

when the trajectory of the platform has the speed

of 20 rpm for 100mm radius eircular motion.

Figrue 10 shows the case when the speed is

increased to 60 rpm. It is seen that the higher the

speed, the more significant the link inertia effects.

The link inertia, therefore, must be included in

higher speed operations,

The calculation time of the inverse dynamic

equations is an important factor In control

applications. When the link inertia effects are

included, it takes l6.59 sec in Pentium III 650

processor. When the link inertia effects are not

included, it takes 8.52 sec. In each case, the

simulation time is 3 sec with a 0.005 sec step size

using the MA TLAB program. Therefore,

engineers can judge whether to include the link

inertia term or not by the proposed dynamic

equation simulation.

4,3 Joint friction effect
The actuator forces generated by the joint

friction can be found from Eq. (32). The friction

al force on the slider axis has direct influence on

the actuator force. However, a portion of the

frictional forces and moments of the universal or

spherical joints have coupled effects through the

Jacobian matrix. Therefore, the joint friction

effects may be magnified depending on the

characteristics of the Jacobian matrix. Figure I I

shows the actuator forces generated by a typical

friction of the sliders, universal joints, and sphe­

rical joints when the trajectory of the platform has

the speed of 20rpm for 100mm radius circular

motion. As compared with the total actuator

forces in Fig. 9 (a), we can say that the frictions

on the universal and spherical joints have small

influence on the total actuator force for this par­

ticular simulation case. This is, however, caused

by relatively small values of the frictional

coefficients at the joints.
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Appendix

A.I Geometrical and dynamic parameters of
a HSM

(

-0.7380 -0.8480 -0.1100 0.1100 0.8480 0.7380)

AO.i= -0.5531 -0.3625 0.9157 0.9157 -0.3625 -0.5531

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(

-0.2130 -0.3230 -0.1100 0.1100 0.3230 0.2130)

AI.i= -0.2500 -0.0594 0.3095 0.3095 -0.0594 -0.2500

0.3500 0.3500 0.3500 0.3500 0.3500 0.3500

(

-0.0515 -0.1615 -0.1100 0.1100 0.1615 0.0515 )

CB~= -0.1567 0.0337 0.12290.12290.0337 -0.1567

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CSi=O.OOI, f.J.si=0.2, rb=O

cUi=O.OOI, rUi=0.00611 F Ai II (Uu/ll (uu II
cPi=O.OOI, rpi=0.006 II FBi II (C:Ou-c:o)/11 C:Ou-C:O II

(

0.1181489 0 0)
1'= 0 0.1181488 0

o 0 0.2258968

(

0.1402837 0 0)
I~i= 0 0.1402837 0

o 0 0.0001087

(
0.00 ) (0.000 )

g= 0.00 , GC'= 0.000
9.81 -0.007

I =0.9m, m= 10.7673kg, mu=2.1729kg,

mSi=0.9971kg


